Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A versatile zero background T-vector system for gene cloning and functional genomics.

Identifieur interne : 000662 ( Main/Exploration ); précédent : 000661; suivant : 000663

A versatile zero background T-vector system for gene cloning and functional genomics.

Auteurs : Songbiao Chen [États-Unis] ; Pattavipha Songkumarn ; Jianli Liu ; Guo-Liang Wang

Source :

RBID : pubmed:19403729

Descripteurs français

English descriptors

Abstract

With the recent availability of complete genomic sequences of many organisms, high-throughput and cost-efficient systems for gene cloning and functional analysis are in great demand. Although site-specific recombination-based cloning systems, such as Gateway cloning technology, are extremely useful for efficient transfer of DNA fragments into multiple destination vectors, the two-step cloning process is time consuming and expensive. Here, we report a zero background TA cloning system that provides simple and high-efficiency direct cloning of PCR-amplified DNA fragments with almost no self-ligation. The improved T-vector system takes advantage of the restriction enzyme XcmI to generate a T-overhang after digestion and the negative selection marker gene ccdB to eliminate the self-ligation background after transformation. We demonstrate the feasibility and flexibility of the technology by developing a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, protein subcellular localization detection, and promoter fragment activity analysis in plants. Because the system can be easily adapted for developing specialized expression vectors for other organisms, zero background TA provides a general, cost-efficient, and high-throughput platform that complements the Gateway cloning system for gene cloning and functional genomics.

DOI: 10.1104/pp.109.137125
PubMed: 19403729
PubMed Central: PMC2705043


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A versatile zero background T-vector system for gene cloning and functional genomics.</title>
<author>
<name sortKey="Chen, Songbiao" sort="Chen, Songbiao" uniqKey="Chen S" first="Songbiao" last="Chen">Songbiao Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210</wicri:regionArea>
<wicri:noRegion>Ohio 43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Songkumarn, Pattavipha" sort="Songkumarn, Pattavipha" uniqKey="Songkumarn P" first="Pattavipha" last="Songkumarn">Pattavipha Songkumarn</name>
</author>
<author>
<name sortKey="Liu, Jianli" sort="Liu, Jianli" uniqKey="Liu J" first="Jianli" last="Liu">Jianli Liu</name>
</author>
<author>
<name sortKey="Wang, Guo Liang" sort="Wang, Guo Liang" uniqKey="Wang G" first="Guo-Liang" last="Wang">Guo-Liang Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19403729</idno>
<idno type="pmid">19403729</idno>
<idno type="doi">10.1104/pp.109.137125</idno>
<idno type="pmc">PMC2705043</idno>
<idno type="wicri:Area/Main/Corpus">000639</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000639</idno>
<idno type="wicri:Area/Main/Curation">000639</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000639</idno>
<idno type="wicri:Area/Main/Exploration">000639</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A versatile zero background T-vector system for gene cloning and functional genomics.</title>
<author>
<name sortKey="Chen, Songbiao" sort="Chen, Songbiao" uniqKey="Chen S" first="Songbiao" last="Chen">Songbiao Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210</wicri:regionArea>
<wicri:noRegion>Ohio 43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Songkumarn, Pattavipha" sort="Songkumarn, Pattavipha" uniqKey="Songkumarn P" first="Pattavipha" last="Songkumarn">Pattavipha Songkumarn</name>
</author>
<author>
<name sortKey="Liu, Jianli" sort="Liu, Jianli" uniqKey="Liu J" first="Jianli" last="Liu">Jianli Liu</name>
</author>
<author>
<name sortKey="Wang, Guo Liang" sort="Wang, Guo Liang" uniqKey="Wang G" first="Guo-Liang" last="Wang">Guo-Liang Wang</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium tumefaciens (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Cloning, Molecular (methods)</term>
<term>DNA Fragmentation (MeSH)</term>
<term>DNA, Plant (chemistry)</term>
<term>Genetic Vectors (MeSH)</term>
<term>Genomics (methods)</term>
<term>MicroRNAs (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>RNA Interference (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (composition chimique)</term>
<term>Agrobacterium tumefaciens (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Clonage moléculaire (méthodes)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Fragmentation de l'ADN (MeSH)</term>
<term>Génomique (méthodes)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Vecteurs génétiques (MeSH)</term>
<term>microARN (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Plant</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Génomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>DNA Fragmentation</term>
<term>Genetic Vectors</term>
<term>MicroRNAs</term>
<term>Molecular Sequence Data</term>
<term>Polymerase Chain Reaction</term>
<term>Promoter Regions, Genetic</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Données de séquences moléculaires</term>
<term>Fragmentation de l'ADN</term>
<term>Interférence par ARN</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Régions promotrices (génétique)</term>
<term>Vecteurs génétiques</term>
<term>microARN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With the recent availability of complete genomic sequences of many organisms, high-throughput and cost-efficient systems for gene cloning and functional analysis are in great demand. Although site-specific recombination-based cloning systems, such as Gateway cloning technology, are extremely useful for efficient transfer of DNA fragments into multiple destination vectors, the two-step cloning process is time consuming and expensive. Here, we report a zero background TA cloning system that provides simple and high-efficiency direct cloning of PCR-amplified DNA fragments with almost no self-ligation. The improved T-vector system takes advantage of the restriction enzyme XcmI to generate a T-overhang after digestion and the negative selection marker gene ccdB to eliminate the self-ligation background after transformation. We demonstrate the feasibility and flexibility of the technology by developing a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, protein subcellular localization detection, and promoter fragment activity analysis in plants. Because the system can be easily adapted for developing specialized expression vectors for other organisms, zero background TA provides a general, cost-efficient, and high-throughput platform that complements the Gateway cloning system for gene cloning and functional genomics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19403729</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>150</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A versatile zero background T-vector system for gene cloning and functional genomics.</ArticleTitle>
<Pagination>
<MedlinePgn>1111-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.109.137125</ELocationID>
<Abstract>
<AbstractText>With the recent availability of complete genomic sequences of many organisms, high-throughput and cost-efficient systems for gene cloning and functional analysis are in great demand. Although site-specific recombination-based cloning systems, such as Gateway cloning technology, are extremely useful for efficient transfer of DNA fragments into multiple destination vectors, the two-step cloning process is time consuming and expensive. Here, we report a zero background TA cloning system that provides simple and high-efficiency direct cloning of PCR-amplified DNA fragments with almost no self-ligation. The improved T-vector system takes advantage of the restriction enzyme XcmI to generate a T-overhang after digestion and the negative selection marker gene ccdB to eliminate the self-ligation background after transformation. We demonstrate the feasibility and flexibility of the technology by developing a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, protein subcellular localization detection, and promoter fragment activity analysis in plants. Because the system can be easily adapted for developing specialized expression vectors for other organisms, zero background TA provides a general, cost-efficient, and high-throughput platform that complements the Gateway cloning system for gene cloning and functional genomics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Songbiao</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Songkumarn</LastName>
<ForeName>Pattavipha</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jianli</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Guo-Liang</ForeName>
<Initials>GL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>FJ905202</AccessionNumber>
<AccessionNumber>FJ905203</AccessionNumber>
<AccessionNumber>FJ905204</AccessionNumber>
<AccessionNumber>FJ905205</AccessionNumber>
<AccessionNumber>FJ905206</AccessionNumber>
<AccessionNumber>FJ905207</AccessionNumber>
<AccessionNumber>FJ905208</AccessionNumber>
<AccessionNumber>FJ905209</AccessionNumber>
<AccessionNumber>FJ905210</AccessionNumber>
<AccessionNumber>FJ905211</AccessionNumber>
<AccessionNumber>FJ905212</AccessionNumber>
<AccessionNumber>FJ905213</AccessionNumber>
<AccessionNumber>FJ905214</AccessionNumber>
<AccessionNumber>FJ905215</AccessionNumber>
<AccessionNumber>FJ905216</AccessionNumber>
<AccessionNumber>FJ905217</AccessionNumber>
<AccessionNumber>FJ905218</AccessionNumber>
<AccessionNumber>FJ905219</AccessionNumber>
<AccessionNumber>FJ905220</AccessionNumber>
<AccessionNumber>FJ905221</AccessionNumber>
<AccessionNumber>FJ905222</AccessionNumber>
<AccessionNumber>FJ905223</AccessionNumber>
<AccessionNumber>FJ905224</AccessionNumber>
<AccessionNumber>FJ905225</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053938" MajorTopicYN="N">DNA Fragmentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="Y">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19403729</ArticleId>
<ArticleId IdType="pii">pp.109.137125</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.137125</ArticleId>
<ArticleId IdType="pmc">PMC2705043</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Methods. 2008 Jan 22;4:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2003 Aug;30(4):289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12828942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(4):674-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Mar 11;19(5):1154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2020552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Feb;18(4):675-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1313711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1144-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Nov;10(11):1788-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Mar;10(3):103-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 21;407(6802):319-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Mar;11(3):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16481211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1121-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(4):616-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2006 Nov 1;358(1):120-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16970900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 20;6(13):3901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Aug 25;19(16):4560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1886782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnology (N Y). 1991 Jul;9(7):657-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1367662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2008 Feb;12(1):55-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jun;20(6):1456-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13959-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(3):e1829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18350165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Aug 5;226(3):735-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1324324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Nov;24(11):1420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17057702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 May 5;225(1):39-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1316444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Mar 11;19(5):1156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2020554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Aug 16;130(1):153-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8344524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Aug;6(2):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7920717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1985 Feb 28-Mar 6;313(6005):810-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3974711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 May;36(9):e54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(3):383-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Oct;14(10B):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Apr;45(4):490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Sep;7(5):417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507457</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Liu, Jianli" sort="Liu, Jianli" uniqKey="Liu J" first="Jianli" last="Liu">Jianli Liu</name>
<name sortKey="Songkumarn, Pattavipha" sort="Songkumarn, Pattavipha" uniqKey="Songkumarn P" first="Pattavipha" last="Songkumarn">Pattavipha Songkumarn</name>
<name sortKey="Wang, Guo Liang" sort="Wang, Guo Liang" uniqKey="Wang G" first="Guo-Liang" last="Wang">Guo-Liang Wang</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Chen, Songbiao" sort="Chen, Songbiao" uniqKey="Chen S" first="Songbiao" last="Chen">Songbiao Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000662 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000662 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19403729
   |texte=   A versatile zero background T-vector system for gene cloning and functional genomics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19403729" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024